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Abstract— In this paper, the numerical solution of fractional 

differential-algebraic equations (FDAEs) is considered by 

Shannon wavelets. We derive the wavelet operational matrix of 

the fractional order integration and by using it to solve the 

fractional differential-algebraic equations. Two illustrative 

examples are presented to demonstrate the applicability and 

validity of the wavelet base technique. To highlight the 

convergence, the numerical examples are solved for different 

values of order. The results obtained are in good-agreement with 

the exact solutions. It is shown that the technique used here is 

effective and easy to apply. 

 

Index Terms— differential-algebraic equations (DAEs), 

fractional differential-algebraic equations (FDAEs), Shannon 

wavelets, operational matrix. 

I. INTRODUCTION 

  Fractional modeling and fractional differential equations has 

been used widely to deal with some engineering problems in 

recent years. The main advantage of fractional derivatives lies 

in that it is more suitable for describing memory and 

hereditary properties of various materials and process in 

comparison with classical integer-order derivative. Besides, 

differential-algebraic equations (DAEs) have been 

successfully used to characterize for many physical and 

engineering topics such as polymer physics, fluid flow, 

electromagnetic theory, dynamics of earthquakes, rheology, 

viscoelastic materials, viscous damping and seismic analysis. 

Also differential-algebraic equations with fractional order, 

which often arise in integrated circuits with new memory 

materials, have been made in some mathematical models in 

recent times. As known, fractional differential-algebraic 

equations usually do not have exact solutions. Therefore, 

approximations and numerical techniques should be used for 

them and also the solution of these equations has been an 

attractive subject for many researchers. 

 [1-12]  

Also, wavelet analysis is a relatively new area in 

mathematical researches. Wavelets are localized functions 

which are a useful tool in many different applications: signal 

analysis, vibration analysis, data compression, solving PDEs, 

solid mechanics and operator analysis. In many times, 

wavelets have been used only as any other kind of orthogonal 

functions, without taking into consideration their fundamental 

properties. [13,14] 

   In this paper, we show to use Shannon wavelet bases to 

solve the fractional order differential-algebraic equations.  

 
 This work was supported by Scientific Research Projects (BAP) 

commission of the Erzurum Technical University. Project Number: 2015/2 

Mesut Karabacak, Department of Actuarial Sciences, Faculty of 

Science, Atatürk University, Erzurum 25240, Turkey (* Corresponding 

Author) 

Muhammed Yiğider, Department of Mathematics, Faculty of Science, 

Erzurum Technical University, Erzurum /Turkey 

 

Firstly, we derive Shannon wavelet operational matrix of the 

fractional order integration and then we use the Shannon 

wavelet operational matrix to transform the fractional order 

systems into algebraic systems of equations completely.  

Finally, we solve this transformed complicated algebraic 

equations system by Mathematica software. 

   The paper is organized as follows. In Section 2, we 

introduce some preliminaries of the fractional calculus theory. 

In Section 3, some relevant properties of the Shannon wavelet 

bases and function approximation by these bases are 

presented. Also, operational matrix of integration for 

Shannon wavelet is obtained. In Section 4, we demonstrate 

some numerical examples and we end with some conclusions 

and remarks in Section 5. 

II. PRELIMINARIES AND BASIC DEFINITIONS 

A fractional differential-algebraic equation (FDAE) with the 

initial conditions is defined as the form below [15] 

 

 

 
 

                                 (1)                                                 

 

Now, we give some necessary definitions of the fractional 

calculus theory, which are used further in this paper. There are 

several definitions of fractional derivative. Most important 

types of fractional derivatives are the Riemann-Liouville and 

the Caputo, which can be described as follows 

 

Definition 2.1. A real function  is said to be in 

the space  if there exists a real number  such 

that  where . Clearly, 

 if . 

Definition 2.2. A function  is said to be in the 

space  if   

Definition 2.3. The Riemann-Liouville fractional integral 

operator of order  of a function, 

 is defined as 

i.  

ii.   

The properties of the operator  can be found in [16-18]. We 

make use of the followings. 

For     and  
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Definition 2.4. The Riemann-Liouville fractional derivative  

of order  of a function is defined as 

 

III. SHANNON WAVELETS AND OPERATIONAL MATRIX OF THE 

FRACTIONAL INTEGRATION  

This section is devoted to introduction of Shannon wavelet 

bases, function approximation with these bases and establish 

the operational matrix of fractional integration. 

i. Shannon wavelets 

Wavelets are a family of functions constructed from dilation 

and translation of a single function called the mother wavelet. 

The scaling function for the Shannon multiresolution analysis 

is sinc function that defined on , and is given below 

 
Theorem 3.1 ([19]). The function  is a scaling function 

of a multiresolution analysis and the corresponding mother 

wavelet is defined by 

 
Theorem 3.2 ([19]). Let  be non-negative integers. Then 

the family 

 
 

is an orthonormal bases of .  are dilatation and 

translation parameters in above theorems respectively. 

 

ii. Reconstruction of a Function by Shannon Wavelets 

 

In this section we express the convergence of orthogonal 

wavelet series when the mother wavelet is of Shannon-type. 

Also we show how to approximate a reasonable function with 

these wavelet bases. 

 

Theorem 3.3 ([19]). Let    , if  is 

of bounded variation on every bounded interval, then the 

wavelet series       

 

converges to  as  at every point of continuity of 

 

 

Therefore, any function  have an Shannon 

expansion as 

 
(2) 

where ,  >  in which  <· , ·> denotes the 

inner product. The serie (3.1) is truncated after -terms as 

 

             (3) 

where m denotes a positive integer,  and  are two 

vectors given by 

 

 

 

iii. Operational matrix of the fractional integration 

 

In this part, we may simply introduce the operational matrix 

of fractional integration of Shannon wavelets. 

 

Firstly, taking the collocation points as 

 ,   

 

we define Shannon matrix  as 

 

 
 

Finally, for , the 

Shannon coefficients  can be 

obtained by 

 
 

For example, when   Shannon matrix is written as 

 
 

 
 
 

Now, we need to integrate the Shannon function vector . 

It can be approximated by Shannon expansion with Shannon 

coefficient matrix P, 

 
where the -square matrix P is called the Shannon wavelet 

operational matrix of integration. Our goal is to derive the 

Shannon wavelet operational matrix of the fractional order 

integration namely . For this goal, we use term 

of Block Pulse Functions on  (BPFs) as follows 

 

 
 

 

where  

 

  functions have some useful properties like disjointness 

and orthogonality. Respectively that is, 
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Then, the Shannon wavelets can be transformed into an 

-term block pulse functions (BPF) as 

 

                        (4) 

where 

 
 

Kilicman and Al Zhour [20], have introduced the Block Pulse 

operational matrix of the fractional order integration  as 

follows 

                         (5) 

where 

 
 

with 

 
  

for     

 

Next, we derive the Shannon wavelet operational matrix of 

the fractional order integration. 

 

Let 

                        (6)        

 

where the square matrix  is called the Shannon 

wavelet operational matrix of the fractional order integration.  

 

Using Eqs. (4), (5), we get 

 

                                                                (7) 

from Eqs. (6) and (7), we get 

 

     (8) 

 

Then, the Shannon wavelet operational matrix of the 

fractional order integration  is written by  

 

                           (9) 

For example,     and  , the operational matrix 

 is computed below  

 

 

IV. NUMERICAL EXPERIMENTS 

  Showing the efficiency of the method, we consider the 

following fractional differential-algebraic equations. All the 

numerical results were obtained by using the Mathematica 

10.0 software  

 

Example 4.1.  We take the following fractional 

differential-algebraic equation.  

 
 

 

 
(10) 

 

with initial conditions   and exact 

solutions   when  

Now, we transform all terms of the equation into Shannon 

series form below. Firstly, let 

 

                                              (11) 

 

                                             (12) 

  

with the initial states, we get 

 

                                     (13) 

 

                          (14) 

                          (15) 

 

Similarly,  can be expanded with the Shannon 

coefficients below 

 

                             (16) 

 

Substituting Eqs. (11-16) into (10), we get  

 

 
 

 
(17) 

Hereby, Eq. (10) has been transformed into a system of 

algebraic equations. Substituting values and solving the 

algebraic equations system, we can find the coefficients   . 

Then using Eq. (14), we can get . The numerical results 

for  are shown in Table 1,2,3 and Fig 1,2,3 

respectively. The numerical solution is in good agreement 

with the exact solutions.  

 

Table 1. Comparison of the numerical values of  for  

 
 

 ∝=0.25 0.5 0.75 1 

       
t=0 0.718159 0.834216 0.907282 0.948749 1. 0.0512505 

t=0.1 0.718159 0.834216 0.907282 0.948749 0.914821 0.0339287 

t=0.2 0.686364 0.729621 0.802391 0.868562 0.858465 0.0100972 

t=0.3 0.841455 0.805047 0.800684 0.831463 0.829474 0.00198882 

t=0.4 0.920544 0.876959 0.841859 0.834009 0.826087 0.0079216 

t=0.5 1.08287 0.989918 0.917579 0.872034 0.846243 0.0257907 

t=0.6 1.08287 0.989918 0.917579 0.872034 0.887597 0.015563 

t=0.7 1.19744 1.11038 1.01788 0.940697 0.947538 0.0068404 

t=0.8 1.34758 1.24052 1.13501 1.03455 1.02321 0.0113343 

t=0.9 1.46242 1.36971 1.26177 1.14762 1.11156 0.0360512 
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Fig 1. The graph of   for different values of  for  

 

Table 2. Comparison of the numerical values of  for  

 
 

m=4 ∝=0.25 0.5 0.75 1 

       
t=0 0.755277 0.898167 0.960868 0.9851 1. 0.0149001 

t=0.1 0.668525 0.758682 0.842397 0.908652 0.914821 0.00616903 

t=0.2 0.734891 0.755093 0.801024 0.857432 0.858465 0.00103258 

t=0.3 0.80229 0.788708 0.79753 0.830224 0.829474 0.000749809 

t=0.4 0.891566 0.845801 0.821455 0.825576 0.826087 0.000511798 

t=0.5 1.01993 0.946003 0.88577 0.851529 0.846243 0.00528577 

t=0.6 1.12119 1.03327 0.952761 0.892594 0.887597 0.00499712 

t=0.7 1.22366 1.12698 1.03187 0.949773 0.947538 0.00223485 

t=0.8 1.32443 1.22407 1.1199 1.0207 1.02321 0.00251104 

t=0.9 1.42115 1.3217 1.21382 1.10286 1.11156 0.00870196 

 

 
Fig 2. The graph of   for different values of  for  

Table 3. Comparison of the numerical values of  for  

 
 

m=5 ∝=0.25 0.5 0.75 1 

       
t=0 0.808558 0.944945 0.985447 0.996139 1. 0.00386059 

t=0.1 0.679012 0.76541 0.851144 0.916502 0.914821 0.00168166 

t=0.2 0.727777 0.754367 0.80185 0.858814 0.858465 0.000349671 

t=0.3 0.807262 0.790713 0.798005 0.829366 0.829474 0.000108214 

t=0.4 0.90261 0.854189 0.826033 0.826312 0.826087 0.000224122 

t=0.5 1.00732 0.935718 0.87841 0.847487 0.846243 0.00124384 

t=0.6 1.10845 1.02195 0.943653 0.886413 0.887597 0.00118456 

t=0.7 1.2194 1.12299 1.02838 0.94701 0.947538 0.000527254 

t=0.8 1.32856 1.22814 1.12372 1.02386 1.02321 0.000649027 

t=0.9 1.43283 1.33381 1.22584 1.11376 1.11156 0.00219866 

 

 
Fig 3. The graph of   for different values of  for   

 

Example 4.2. We take the following fractional 

differential-algebraic equation. 

 

 
      (18) 

 
 

with initial conditions  and exact 

solutions  and   when  

  

Now, let 

                                  (19) 

 

                                          (20) 

 

with the initial states, we have 

 

                              (21) 

 

                     (22) 

                     (23) 

 

Similarly, the known functions in the equation  

 
       

 

can be expanded with Shannon coefficients below 

 

                        (24) 

             (25) 

 

Substituting Eqs. (19-25) into (18), we get  

 

 

 
 

 
 

(26) 

Hence, Eq. (18) has been transformed into an algebraic 

equations system. Solving this system, we can find the 

coefficients  . Then using Eq. (22), we can get . The 

numerical results for  are shown in Table 4,5,6 and 
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Fig 4,5,6 for  and by same way for  are shown in 

Table 7,8,9. and Fig 7,8,9 respectively. The numerical 

solutions is in good agreement with the exact solutions. 

 

Table 4. Comparison of the numerical values of  for  

 
 ∝=0.25 0.5 0.75 1 

       
t=0 0.740771 0.830452 0.89799 0.941079 1. 0.0589215 

t=0.1 0.740771 0.830452 0.89799 0.941079 0.904837 0.0362411 

t=0.2 0.629461 0.677678 0.753775 0.830197 0.818731 0.011466 

t=0.3 0.620348 0.642125 0.673724 0.732411 0.740818 0.00840716 

t=0.4 0.552602 0.578078 0.605185 0.646168 0.67032 0.0241523 

t=0.5 0.541898 0.540616 0.547911 0.570099 0.606531 0.0364318 

t=0.6 0.541898 0.540616 0.547911 0.570099 0.548812 0.0212872 

t=0.7 0.494188 0.499459 0.498046 0.503 0.496585 0.00641461 

t=0.8 0.481892 0.466772 0.454117 0.44381 0.449329 0.00551909 

t=0.9 0.447091 0.435622 0.415053 0.391594 0.40657 0.0149757 

 

 
Fig 4. The graph of   for different values of  for   

 

Table 5. Comparison of the numerical values of  for  

 
 ∝=0.25 0.5 0.75 1 

       
t=0 0.261101 0.17142 0.103883 0.060793 0. 0.0607939 

t=0.1 0.261101 0.17142 0.103883 0.060793 0.099833 0.0390395 

t=0.2 0.385971 0.337755 0.261658 0.185236 0.198669 0.0134337 

t=0.3 0.418706 0.396929 0.36533 0.306643 0.29552 0.0111229 

t=0.4 0.516723 0.491247 0.46414 0.423157 0.389418 0.0337387 

t=0.5 0.561187 0.56247 0.555174 0.532987 0.479426 0.0535611 

t=0.6 0.561187 0.56247 0.555174 0.532987 0.564642 0.0316558 

t=0.7 0.643251 0.637979 0.639393 0.634439 0.644218 0.0097789 

t=0.8 0.687864 0.702984 0.715639 0.725946 0.717356 0.0085900 

t=0.9 0.750595 0.762064 0.782634 0.806093 0.783327 0.0227659 

 

 
Fig 5. The graph of   for different values of  for   

 

Table 6. Comparison of the numerical values of  for  

 
 ∝=0.25 0.5 0.75 1 

       
t=0 0.795161 0.903384 0.960563 0.984614 1. 0.0153864 

t=0.1 0.676905 0.75091 0.827633 0.896485 0.904837 0.00835263 

t=0.2 0.648953 0.689144 0.747001 0.816245 0.818731 0.0024854 

t=0.3 0.607608 0.641041 0.683477 0.743189 0.740818 0.00237058 

t=0.4 0.580252 0.600786 0.629933 0.676672 0.67032 0.0063519 

t=0.5 0.544298 0.554566 0.568868 0.597151 0.606531 0.00937943 

t=0.6 0.520223 0.523946 0.528777 0.543706 0.548812 0.00510517 

t=0.7 0.498754 0.496064 0.492542 0.495045 0.496585 0.00153984 

t=0.8 0.478835 0.47051 0.459554 0.45074 0.449329 0.001411 

t=0.9 0.460617 0.446988 0.429373 0.4104 0.40657 0.00383038 

 

 
Fig 6. The graph of   for different values of  for   

 

Table 7.Comparison of the numerical values of  

 for  

 
 ∝=0.25 0.5 0.75 1 

       
t=0 0.20496 0.0967363 0.039558 0.0155072 0. 0.0155072 

t=0.1 0.328647 0.254642 0.177918 0.109066 0.0998334 0.0092330 

t=0.2 0.368954 0.328763 0.270906 0.201662 0.198669 0.0029925 

t=0.3 0.428062 0.39463 0.352194 0.292481 0.29552 0.0030387 

t=0.4 0.477148 0.456614 0.427467 0.380728 0.389418 0.0086900 

t=0.5 0.545908 0.53564 0.521338 0.493055 0.479426 0.0136292 

t=0.6 0.595822 0.5921 0.587269 0.572339 0.564642 0.0076967 

t=0.7 0.642886 0.645576 0.649099 0.646595 0.644218 0.0023774 

t=0.8 0.687076 0.695401 0.706357 0.715171 0.717356 0.0021853 

t=0.9 0.727248 0.740876 0.758491 0.777464 0.783327 0.0058628 

 

 
Fig 7. The graph of   for different values of  for  

 



                                                                              

Shannon wavelet transform for solving fractional differential-algebraic equations numerically 

 

                                                                                              61                                                                          www.ijeas.org 

 

Table 8. Comparison of the numerical values of  for  

 
 ∝=0.25 0.5 0.75 1 

       
t=0 0.837625 0.947223 0.985487 0.996108 1. 0.003891 

t=0.1 0.694830 0.762959 0.839847 0.906966 0.904837 0.002129 

t=0.2 0.645960 0.691372 0.750024 0.819375 0.818731 0.000644 

t=0.3 0.608269 0.639287 0.681130 0.740242 0.740818 0.000575 

t=0.4 0.575881 0.596161 0.623803 0.668753 0.67032 0.001566 

t=0.5 0.547148 0.558630 0.574218 0.604167 0.606531 0.002363 

t=0.6 0.523189 0.527625 0.533584 0.550100 0.548812 0.001288 

t=0.7 0.499571 0.497186 0.494000 0.496974 0.496585 0.000388 

t=0.8 0.478068 0.469498 0.458257 0.448978 0.449329 0.000350 

t=0.9 0.458432 0.444184 0.425791 0.405617 0.40657 0.000951 

 

  
Fig 8. The graph of   for different values of  for  

 

Table 9. Comparison of the numerical values of  for  

 
 ∝=0.25 0.5 0.75 1 

       
t=0 0.162382 0.052784 0.01452 0.0038986 0. 0.00389869 

t=0.1 0.309632 0.241502 0.164614 0.0974953 0.099833 0.00233816 

t=0.2 0.371313 0.325902 0.26725 0.197899 0.198669 0.00077010 

t=0.3 0.428237 0.397219 0.355376 0.296263 0.29552 0.00074306 

t=0.4 0.484445 0.464165 0.436523 0.391574 0.389418 0.00215538 

t=0.5 0.539867 0.528386 0.512797 0.482848 0.479426 0.00342282 

t=0.6 0.589617 0.58518 0.579222 0.562705 0.564642 0.00193698 

t=0.7 0.641022 0.643407 0.646593 0.643619 0.644218 0.00059834 

t=0.8 0.68881 0.69738 0.708621 0.7179 0.717356 0.00054380 

t=0.9 0.731967 0.746215 0.764608 0.784782 0.783327 0.00145472 

 

 

Fig 9. The graph of   for different values of  for   

V. CONCLUSION 

In this paper, the Shannon wavelet functions has been 

employed to solve fractional differential-algebraic equations 

(FDAEs). The results obtained by the method are in good 

agreement with the given exact solutions. The study show that 

the method is effective techniques to solve fractional 

differential–algebraic equations, and the method presents real 

advantages in terms of comprehensible applicability and 

precision 
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